Pheno Forecasts predict seasonal activity of pest and invasive species to support decision making

The USA-NPN produces and distributes daily national maps – or Pheno Forecasts – indicating the status of insect pest and invasive plant life cycle stages as part of a growing suite of phenology map products.

The USA National Phenology Network’s (USA-NPN) Pheno Forecast maps indicate the status of insect pest or invasive plant life cycle stages in real time across the contiguous United States. This information can guide when to monitor or undertake management activities. These maps, available at 2.5 km spatial resolution, are updated daily and are available six days into the future.

Pheno Forecast maps are offered for the following species:

Insect pests:
- apple maggot (*Rhagoletis pomonella*)
- Asian longhorned beetle (*Anoplophora glabripennis*)
- bagworm (*Thryothorix ephameriformis*)
- bronze birch borer (*Agrilus anxius*)
- eastern tent caterpillar (*Malacosoma americanum*)
- emerald ash borer (*Agrilus planipennis*)
- spongy moth (*Lymantria dispar*)
- hemlock woolly adelgid (*Adelges tsugae*)
- lilac borer (*Podosesia syringae*)
- magnolia scale (*Neolecanium cornuparvum*)
- pine needle scale (*Chionaspis pinifolii*)
- winter moth (*Operophtera brumata*)

Invasive plants:
- buffelgrass (*Pennisetum ciliare*)

ACCESS THE MAPS
Pheno Forecast maps are available on the USA-NPN website (www.usanpn.org/data/forecasts) and through the USA-NPN visualization tool (data.usanpn.org/npn-viz-tool/).

Pheno Forecasts are based on published growing degree day (GDD) or seasonal precipitation thresholds for life cycle events when monitoring and management actions are typically undertaken. Using the USA-NPN daily accumulated growing degree day maps or precipitation accumulations, locations are shaded as not yet approaching, approaching, experiencing, and past the stages of interest, approaching the stage, experiencing the stage, and past the stage relative to an established threshold.

These maps are intended to provide a broad-scale prediction of when monitoring and management may be necessary and are intended to supplement local knowledge. Forecast accuracy may vary locally based on microclimatic variation. In addition, thresholds may perform with variable accuracy across species ranges. For more information about these pests and others specific to your state, contact your local Cooperative Extension program.
Accessing the Pheno Forecasts through the USA-NPN visualization tool offers additional information on site-specific patterns of heat accumulation. This information can be used to evaluate whether insect pests will reach life cycle stages occur earlier or later than usual at a site.

RECEIVE UPDATES ON PEST ACTIVITY AT YOUR LOCATION

Sign up to receive advance warning by email of activity in your pest of interest 2 weeks, and 6 days, before the predicted life cycle stage is reached at your location. Sign up to receive notifications for any of the Pheno Forecasts at www.usanpn.org/data/forecasts.

REPORT PEST ACTIVITY AT YOUR SITE OVER THE SEASON

Tracking phenology at your site can help you choose the best time to perform management activities and identify pest or invasive species concerns early. Report the status of the Pheno Forecast species through the citizen science program, Nature’s Notebook, and the USA-NPN’s Pest Patrol campaign (www.usanpn.org/nn/PestPatrol).

Reporting can be done by anyone – professionals or volunteers – and raises awareness about particularly troublesome pests. These observations will be used to validate and improve the Pheno Forecast maps.

Learn more at www.naturesnotebook.org.

REFERENCES:

CONTACT INFORMATION

Kathy Gerst
USA National Phenology Network
1311 East 4th Street,
Tucson, AZ 85721
(520) 621-1740
kathy@usanpn.org
www.usanpn.org

Front top photo of hemlock woolly adelgid: Connecticut Agricultural Experiment Station, Connecticut Agricultural Experiment Station, Bugwood.org; photo cropped

Front photo of emerald ash borer: David Cappaert, Bugwood.org